
Useful Tool Demo:
Makefiles
<gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

>1 .c file in project

• As project gets big - only want to re-
compile a file if it has actually
changed (speed-up)

• build system is bad or optimisation
is struggling.

• ~1-5s for <50k LOC. ~Instant for
hot-reloading (advanced).

• De-couple stages of compilation

• gcc -o myprog file1.c file2.c file3.c

Build Object Files
• Compile separate object files first  
gcc -o file1.o file1.c  
gcc -o file2.o file2.c  
gcc -o file2.o file2.c

• Link together in step 2  
gcc -o myprog file1.o file2.o file3.o

• No need to rebuild .o file if its .c didn't change

• Quicker to build

Automate This
• A shell script would be fine

• e.g. BaSh 'build.sh' or MS batch file 'build.bat'

• Some IDEs - maintain own "project"/solution files

• Most open-source and Unix-ish software - has a Makefile

• CMake etc are higher-level

• you maintain a CMake file

• user runs CMake or CMake-gui to generate whatever Makefile or IDE's
project file

• CMake a big mess

Makefile
• Has its own weird little programming language

• Is fairly simple

• Picky about tabs and spaces [insert groan]

• Can run any terminal commands

• but mostly designed for our job of building from multiple files

• Execute with 'make' program

• $ cd my_projects_folder

• $ make - this will use the file called 'Makefile'

• Make is usually part of GNU project with GCC and other Unix-like tools.

Simple Makefile

must be a tab 
- not spaces!

named 
command

-o means 'output file is'  
do not leave out the  

file name 
you have been warned

source code or  
object files
no .h files!

Then
• Just cd to your folder and type make

• looks for a file called Makefile (no extension)

• If there is only an 'all' section it will run that

• To run a specific section:

• make all

• make othersectionname

Variables, Flags, Libraries,
Include paths

"look for a file called libm.dylib" 
or libm.so or libm.dll

"look in these subfolders for  
headers and libraries"

define variable

use value of variable

Rule for Building Object
Files

rule for building a .o
-c means build a .o

$@ is the thingname.o
$< is the thingname.c

dependencies - "make sure  
you have these first"

"Only rebuild changed files"

• Try make now. You should get a program and
main.o and second.o in your folder.

• What if you delete just one of the .o files and run
make again?

Make all, Make clean
• Sometimes you want a complete rebuild

• changes in headers, libraries, etc.

Unix-style remove command

Source files list

\ means 'continue on next line'

GCC/Clang Flags to Know
About

• -o next string is the output file name

• -c compile object file only

• -g compile for debug

• -std=c99 'compile in C99 mode'. many alternatives.

• -pg compile for profiling and debug

• -Wall enable all warnings (do this). maybe also -Wfatal-errors -pedantic

• -O optimise code. others: -Ofast -O3 -O2 -O1

• -DANTON make ANTON appear to pre-processor as a #defined value

• -fsanitise=… lots of extra checks can be added for leaks/array bounds etc.

• -m64 -arch_x86_64 -mmacosx-version-min=10.11 "only build for these systems"

Advantages
• Much faster builds and linking for larger projects

• Simple(ish) to write, read, and user-modify

• mostly it's just a list of your .c files

• e.g. my book code

• (don't force your favourite build system on
programmers).

• Everybody knows 'make'

Limitations
• not good at platform switch - I usually end up with (if

linking different libraries for each system)

• Makefile.win32

• Makefile.linux64 make -f Makefile.linux64

• Makefile.osx

• A special language for a build system is insane (but
somewhat independent)

• Many IDEs don't use Makefiles

Reference

• GNU make manual  
https://www.gnu.org/software/make/manual/
reference for flags etc

• man gcc or man clang or man make

• Any make tutorial

https://www.gnu.org/software/make/manual/

